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Coincidence site and displacement shift complete lattices of triple junctions are

analysed. Dislocation reactions at triple junctions are considered. It is shown

that in � � 1 junctions no trapped residual triple-junction dislocation is

geometrically necessary for dislocation transmission between adjoining grain

boundaries. However, the situation is different for � 6� 1 triple junctions, where

in some cases the residual dislocation cannot leave the triple junction for a grain

boundary without generating a stacking-fault-like defect.

1. Introduction

This is the third paper in the series on the crystallography of

triple junctions of coincidence site lattice (CSL) boundaries.

The reader is referred to the two previous papers (Gertsman,

2001a,b,c) for a more detailed introduction to the problem. In

those papers, the CSL theory of multicrystallite assemblages,

in particular triple junctions, was suggested. However, some

questions pertaining to the auxiliary lattices de®ning the triple

junction, viz the CSL and its derivative, the displacement shift

complete (DSC) lattice, have been either put forth as

conjectures or not addressed at all. Knowledge of these

auxiliary lattices is needed for computer modelling and

analysis of experimental data. The current paper explores the

properties of the triple-junction CSL and DSC lattice, and

applies the results to the analysis of dislocation interactions at

the triple junction. The latter is important for consideration of

transmission of sliding from boundary to boundary through

the triple junction as well as for general understanding of the

dislocation balance in the polycrystal. Although the examples

given in the paper relate to the cubic crystal system, the

consideration is, in general, not lattice speci®c. Hence, the

conclusions are applicable to an arbitrary crystal lattice.

2. Specifics of coincidence site lattice of a triple
junction

The triple-junction CSL is the lattice of sites common to three

crystal lattices, i.e. it is a sublattice of all the three crystal

lattices. It is easy to show that the triple-junction CSL is also a

sublattice of all the three CSLs formed by the crystal lattice

pairs (grain-boundary CSLs), i.e. it is the lattice of sites

common to all three grain-boundary CSLs.

Consider a triple junction of the three crystals de®ned by

the lattices �1, �2 and �3 (Fig. 1) with bases (e11, e12, e13),

(e21, e22, e23) and (e31, e32, e33), respectively. Denote �GB1
C :�

CSL(�1, �2), �GB2
C :� CSL(�1, �3), �GB3

C :� CSL(�2, �3)

and �TJ
C :� CSL(�1, �2, �3).

Grain-boundary CSLs consist of vectors cGB1 2 (�1, �2),

cGB2 2 (�1, �3), cGB3 2 (�2, �3), i.e.

cGB1 �P3

i�1

l1ie1i �
P3

i�1

l2ie2i; cGB2 �P3

i�1

l1ie1i �
P3

i�1

l3ie3i;

cGB3 �P3

i�1

l2ie2i �
P3

i�1

l3ie3i; �1�

where all l are integers. �TJ
C consists of vectors

cTJ 2 (�1, �2, �3), i.e.

cTJ �P3

i�1

m1ie1i �
P3

i�1

m2ie2i �
P3

i�1

m3ie3i; �2�

where all m are integers.

Thus, the triple-junction CSL is the CSL of the three grain-

boundary CSLs. However, it is not immediately clear whether

the triple-junction CSL itself belongs to the same class as

grain-boundary CSLs. In other words: Is the triple-junction

CSL characterized by the multiplicity factor �TJ crystal-

lographically equivalent to some grain-boundary CSL with the

same magnitude of the reciprocal density of coincident sites,

� = �TJ? For � = 1 junctions,1 the answer is obvious and

trivial since the triple-junction CSL coincides with the CSL of

the boundary with the greatest � value and �TJ � �GB
max. Such

triple-junction CSLs belong to the class of grain-boundary

CSLs characteristic of the given crystal system ± they form a

subclass characterized by non-prime � values.

The answer is not so clear, however, for � 6� 1 triple junc-

tions. To show that triple-junction CSLs that cannot be

reduced to a grain-boundary CSL do exist, it is suf®cient to

demonstrate a numerical example. Consider e.g. a �9±�9±�9

junction (�TJ = 27). Fig. 2(a) presents a graphic illustration of

the �TJ = 27 triple-junction CSL. The schematic shows the

superposition of three simple cubic lattices mutually rotated

by 120� about [511], i.e. each pair of lattices has the �9

misorientation [this example is considered in detail in

1 � is the parameter in the � combination rule: �3 = �1�2=� (Gertsman,
2001a).
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Gertsman (2001a)]. Two grain-boundary CSLs with � = 27

exist, see e.g. Grimmer et al. (1974). Obviously, the �TJ = 27

CSL cannot be the same as the �27a grain-boundary CSL

because, while the former is characterized by the coincidence

of every third crystal lattice site in every ninth (511) plane, all

lattice sites are in coincident positions in every 27th (511)

plane in the latter (this simply follows from the fact that

180�[511] is one of the descriptions of the �27a misorienta-

tion). The �27b con®guration is displayed in Fig. 2(b). The

two lattices in Fig. 2(b) are shown having the 60�[511] mis-

orientation, which is one of the equivalent descriptions of the

�27b misorientation. At ®rst glance, it looks as if the �27b

grain-boundary CSL is the same as the �TJ = 27 CSL: the

coincidence occurs for every third crystal lattice site in every

ninth (511) plane. However, the CSL planes parallel to (511)

have different shifts for the two CSLs (see Fig. 2). Therefore,

the two CSLs are different. Formally, this can be shown as

follows.

The unit cell of the �27b CSL can be described by the

following basis:

C�27b �
ÿ1 ÿ1 2

4 1 0

1 4 ÿ1

0@ 1A: �3�

Figure 2
(a) Triple-junction CSL with �TJ = 27. (b) Grain-boundary CSL �27b.
(511) projection. Coincident sites in the plane of the ®gure are shown by
the black circles, smaller grey circles denote coincident sites in the plane
31/2a below the plane of the ®gure.

Figure 3
Comparison between CSLs (a) �TJ99 and (b) �99a. (110) projection.
Black circles denote coincident sites in the plane of the ®gure, open
circles denote coincident sites at height 2ÿ1/2a.

Figure 1
Schematics of a triple junction.



This unit cell can be reshaped to the form given in Table 1 of

Grimmer et al. (1974), but we have chosen the ®rst two basis

vectors in the (511) plane for an easier comparison with Fig. 1.

The basis of the �TJ = 27 CSL can be described by

C�TJ27 �
ÿ1 ÿ1 2

4 1 1

1 4 ÿ2

0@ 1A: �4�

One can easily check that the unit-cell volumes, calculated e.g.

as e1 � (e2 � e3), are equal to 27 in both cases (assuming the

crystal lattice constant a = 1), i.e. these are indeed � = 27

CSLs. The two CSLs differ in the third basis vector. Vector e3

of the �27b CSL does not belong to the lattice described by

the unit cell C�TJ27, i.e. it cannot be obtained by a linear

combination of the basis vectors of the �TJ = 27 CSL. Simi-

larly, vector e3 of the �TJ = 27 CSL does not belong to the

lattice described by the unit cell C�27b.

Yet, the conclusion that all � 6� 1 triple-junction CSLs differ

from grain-boundary CSLs is not correct. A counterexample is

presented in Fig. 3. Fig. 3(a) displays the superposition of

three crystal lattices having the �9, �33a and �33c grain-

boundary misorientations. This example of an � 6� 1 triple

junction was also considered in Gertsman (2001a), it is char-

acterized by �TJ = 99. Fig. 3(b) shows two lattices misoriented

by 11.54� about [110] and forming the �99a grain-boundary

CSL. It is evident that the two CSLs are the same, which can

also be shown in a different way.

The orientations of the three crystallites in the �9±�33a±

�33c triple junction can be represented as

A �
1 0 0

0 1 0

0 0 1

0B@
1CA; B � 1

9

8 1 ÿ4

1 8 4

4 ÿ4 7

0B@
1CA;

C � 1

33

25 8 ÿ20

8 25 20

20 ÿ20 17

0B@
1CA: �5�

Let us add the fourth crystallite with the orientation

D � 1

99

98 1 14

1 98 ÿ14

ÿ14 14 97

0@ 1A: �6�

The four crystal orientations can form six grain boundaries

with the following misorientations: A=B±�9, A=C±�33c,

A=D±�99a, B=C±�33a, B=D±�11 and C=D±�3. Four triple

junctions are possible among the four given crystals, viz A±B±

C, A±B±D, A±C±D and B±C±D. Interestingly, three of them

are characterized by �TJ = 99: two � = 1 junctions, �9±�11±

�99a and �3±�33c±�99a, and an � 6� 1 junction �9±�33a±

�33c (schematics containing all these triple junctions are

shown in Fig. 4). It is immediately clear that the ®rst two

junctions have the triple-junction CSLs the same as grain-

boundary CSL �99a. Moreover, any con®guration of the four

crystallites will be characterized by the multi-CSL with

�tetra = 99, which is again the same as �99a [see Gertsman

(2001c) for different spatial arrangements of grains in the

tetracrystal and for the details of calculating �]. Then, all the

triple-junction CSLs in the arrangement shown in Fig. 4 must

completely coincide with each other and with the tetra-CSL.

Hence, the CSL of the A±B±C (�9±�33a±�33c) junction

characterized by �TJ = 99 cannot be different from �99a since

otherwise the superposition of the grain-boundary and triple-

junction CSLs in Fig. 4 would produce a tetra-CSL with

� > 99.

The above example shows that the same triple-junction

CSL can characterize different triple junctions. The following

remote analogy could be suggested for this property ± a grain-

boundary CSL describes different spatial arrangements of the

two adjoining crystals, i.e. interfacial planes, even though it

uniquely describes the misorientation. Another important

point: in the above example, simple topological transforma-

tions consisting of grain-boundary dissociations and mergers

can transform a tetracrystal or tricrystal characterized by the

� = 99 CSL into a bicrystal with a �99a grain boundary. In

contrast, in the previously considered example of the �9±�9±

�9 tricrystal, no topological transformation can generate a

�27 grain boundary.

3. Displacement shift complete lattice of a triple
junction

The triple-junction DSC lattice was introduced by Gertsman

(2001a) as the coarsest lattice containing the three crystal

lattices. It can be shown that the DSC lattice of the triple

junction also contains DSC lattices of all three boundaries as

sublattices.

Consider a triple junction of the three crystals de®ned by

the lattices �1, �2 and �3 (see Fig. 1). The DSC lattice of grain

boundary GB1, �GB1
D , contains all lattice sites of �1 and �2.

Then, the triple-junction DSC lattice, �TJ
D , can be built on �3

and �GB1
D . Analogously, �TJ

D can be built on �2 and �GB2
D , and

on �1 and �GB3
D . Thus, all the three grain-boundary DSC

lattices are sublattices of the triple-junction DSC lattice, i.e.

their sites belong to the triple-junction DSC lattice. This can

be described as follows.

Grain-boundary DSC lattices consist of vectors that can be

written as sums of vectors of the two corresponding crystal

lattices, i.e. the grain-boundary DSC vectors may be repre-

sented in following manner:
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Figure 4
Schematics of the crystallite arrangement characterized by the same CSL
� = 99.
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dGB1 �P3

i�1

�k1ie1i � k2ie2i�; �7a�

dGB2 �P3

i�1

�l1ie1i � l3ie3i�; �7b�

dGB3 �P3

i�1

�m2ie2i �m3ie3i�; �7c�

where all k, l, m are integers.

The triple-junction DSC lattice consists of vectors, which

can be written as a sum of lattice vectors of �1, �2, �3, i.e.

dTJ �P3

i�1

�n1ie1i � n2ie2i � n3ie3i�; �8�

where all n are integers.

It is easy to see that the set of dTJ incorporates all three sets:

dGB1, dGB2 and dGB3.

So the de®nition could be re-formulated as follows: the

triple-junction DSC lattice is the coarsest-cell lattice

containing all sites of the three crystal lattices and, as a

consequence, all sites of the three grain-boundary DSC

lattices.

The following property facilitates analytical determination

of the triple-junction DSC lattice in every concrete case.

Triple-junction CSL±DSC lattice reciprocity. The DSC

lattice of the triple junction is the reciprocal lattice of the CSL

formed by the reciprocal lattices of the three crystals.

This property was surmised in Gertsman (2001a). It can be

proven in the same way as the analogous property of the grain-

boundary DSC lattice (Grimmer, 1974).

Consider again the three crystal lattices �1, �2, �3, de®ned

by their bases (e11, e12, e13), (e21, e22, e23) and (e31, e32, e33).

The corresponding reciprocal lattices and their bases are:

��1�e�11; e�12; e�13�, ��2�e�21; e�22; e�23� and ��3�e�31; e�32; e�33�. Here-

after, the asterisk is used to indicate reciprocity. The following

relationship determines the reciprocal bases:

ekie
�
kj � �ij; �ij � 1 if i � j and �ij � 0 if i 6� j: �9�

Denote ��C :� CSL���1;��2;��3�. Notice that in a general

case ��C 6� ��TJ
C ��.

We want to show that

�TJ
D � ���C��: �10�

We shall use the following property: a scalar product between

any vectors of the direct and reciprocal lattices is an integer.

With respect to our case, this can be formulated as follows: If

for any vectors x 2 ��C and y 2 �TJ
D , xy = integer, then

��C 2 ��TJ
D ��: �11�

Vector x 2 ��C if and only if

x �P3

i�1

m1ie
�
1i �

P3

i�1

m2ie
�
2i �

P3

i�1

m3ie
�
3i: �12�

All vectors y 2 �D are given by (8). Now, using (9), we can

calculate

xy �P3

i�1

m1ie
�
1i

P3

i�1

n1ie1i �
P3

i�1

m2ie
�
2i

P3

i�1

n2ie2i �
P3

i�1

m3ie
�
3i

P3

i�1

n3ie3i

�P3

i�1

�m1in1i �m2in2i �m3in3i� � integer: �13�

Thus, we have shown that ��C 2 ��TJ
D ��, which is a necessary

but not suf®cient condition for the ful®lment of (10). At the

same time, �TJ
D contains �1, �2 and �3 as sublattices. Then

(�TJ
D �� 2 ���1;��2;��3� and, consequently,

��TJ
D �� 2 ��C: �14�

Comparing (11) and (14), we conclude that (�TJ
D �� � ��C.

Applying the reciprocal operation, we obtain �TJ
D � ���C��,

which is relationship (10).

What is the meaning of the triple-junction DSC lattice?

Recall that the grain-boundary DSC lattice is composed of all

translations of one of the crystal lattices with respect to the

other that leave the periodic superposition pattern unchanged

(Grimmer et al., 1974). That is, the DSC vectors represent such

translations that retain the CSL, although the coincident sites

are shifted to new positions. Such translations determine the

Burgers vectors of full grain-boundary dislocations (Grimmer,

1974). The situation is more complicated for the triple-junc-

tion DSC lattice because there are more degrees of freedom in

the system.

Consider the triple junction (see Fig. 1). Let us ®x �1 and

shift �2 by vector s1. In order to preserve the CSL of grain

boundary GB1, s1 must be a DSC vector of GB1, i.e.

s1 � dGB1 2 �GB1
D . However, to retain the entire superposition

pattern of �1, �2 and �3, it is also necessary to retain �GB2
C

and �GB3
C . Two variants that satisfy this condition are possible:

�i� s1 � dGB1 � dGB3; �15�
that is, this vector belongs to �GB1

D and �GB3
D simultaneously;

(ii) �3 is shifted by s2 such that

s2 � dGB2 2 �GB2
D AND s1 ÿ s2 � dGB3 2 �GB3

D : �16�
That is, displacements at all the three boundaries are equal to

the corresponding grain-boundary DSC vectors. Formally, the

®rst variant represents a particular case of the second variant

when s2 = 0.

It is evident that s1 and s2 belong to the triple-junction DSC

lattice since any grain-boundary DSC vector is also the triple-

junction DSC vector. However, not every vector of �TJ
D retains

�TJ
C if the translation is applied only to one crystal, because in

a general case translations of two crystal lattices are necessary.

Then the obvious question is: what is de®ned by the triple-

junction DSC lattice? The following section demonstrates that

vectors of this lattice give the Burgers vectors of triple-junc-

tion dislocations arising from interactions between grain-

boundary dislocations from contiguous boundaries.

4. Dislocation reactions at triple junctions

Only geometrical possibilities of dislocation reactions are

considered in this paper without taking into account any

energetic considerations.



Grain-boundary DSC lattices consist of vectors represented

by equations (7), i.e. they can be represented as sums of the

corresponding lattice vectors. The triple-junction DSC lattice

consists of vectors that can be represented as sums of the three

crystal lattice vectors, see equation (8).

In the particular case of an � � 1 junction, �TJ
C � �GB3

C ,

where GB3 is the grain boundary characterized by the largest

�. Then, �TJ
D � �GB3

D and

dGB3 � dTJ �P3

i�1

�m2ie2i �m3ie3i� �
P3

i�1

�n1ie1i � n2ie2i � n3ie3i�:
�17�

Consider a passage of a grain-boundary dislocation from one

boundary into another, e.g. from GB1 to GB2 (Fig. 5). In a

general case, there must be a change of the Burgers vector:

bGB1 �P3

i�1

�k1ie1i � k2ie2i�; �18a�

bGB2 �P3

i�1

�l1ie1i � l3ie3i�; �18b�

�b � bGB1 ÿ bGB2 �P3

i�1

��k1i ÿ l1i�e1i ÿ k2ie2i � l3ie3i�: �18c�

In the above equations, k and l are ®xed integers, unlike

equations (7), where they have the meaning `any integer'.

Comparing (18c) and (8), one can notice that the residual

Burgers vector is always a vector of the triple-junction DSC

lattice, i.e.

bGB1 ÿ bGB2 � bTJ 2 �TJ
D : �19�

In an � � 1 triple junction, this residual dislocation will have a

Burgers vector bTJ 2 �GB3
D , so it is actually not coupled to the

triple junction and may leave it for grain boundary GB3.

However, in a general case of an � 6� 1 triple junction,

a residual dislocation with a Burgers vector bTJ =2
��GB1

D ;�GB2
D ;�GB3

D ) may be trapped in the triple junction.

Such a dislocation will be associated with the triple-junction

line and its movement into any of the grain boundaries will

create a grain-boundary stacking fault since it is a partial

dislocation in any of the three boundaries. The following

analogy can be suggested: a full grain-boundary dislocation

possessing a DSC Burgers vector creates a lattice stacking

fault when it is emitted from the grain boundary into the

crystal.

Incidentally, (19) illustrates another de®nition of the triple-

junction DSC lattice. Noting that the vectors of the grain-

boundary DSC lattice de®ne the geometrically possible

Burgers vectors of full grain-boundary dislocations, one can

see that the vectors of the triple-junction DSC lattice can be

interpreted as the sum vectors of two geometrically necessary

Burgers vectors of dislocations in two grain boundaries

meeting at the triple junction.

For completeness, let us also consider a passage of a grain-

boundary dislocation between GB1 (or GB2) and GB3 in an

� = 1 triple junction. Since �GB1
D and �GB2

D are sublattices of

�TJ
D � �GB3

D (see x3 above), any dislocation from GB1 or GB2

can move into GB3 without leaving residual dislocations, since

their Burgers vectors are also vectors of �GB3
D . In other words,

a grain-boundary dislocation approaching the triple junction

from GB1 (or GB2) can be transferred to GB3 as a whole

without splitting. At the reverse transmission, i.e. from GB3

into GB1 (or GB2), the residual Burgers vector is

bGB3 ÿ bGB1 �P3

i�1

�ÿk1ie1i � �m2i ÿ k2i�e2i �m3ie3i� 2 �TJ
D

� �GB3
D : �20�

That is, in a general case when bGB3 is not a DSC vector of

GB1, the original grain-boundary dislocation should split into

at least two dislocations, bGB1 and �b. However, the latter, the

residual triple-junction dislocation, in this case is again not

locked in the triple junction and may leave it for GB3.

To illustrate the above analysis, it is instructive to consider a

numerical example. Grain-boundary dislocation reactions at

� � 1 triple junctions are relatively simple; see e.g. experi-

mental observations and analyses of Clarebrough & Forwood

(1987) as an illustration. Let us show that, in � 6� 1 triple

junctions, reactions between full grain-boundary dislocations

can result in triple-junction dislocations, whose Burgers

vectors are not full grain-boundary DSC vectors. Consider

again the simplest � 6� 1 junction, i.e. �9±�9±�9, in the

simple cubic lattice. The triple-junction CSL in this case is

characterized by �TJ = 27 (Gertsman, 2001a). Choose crystal

lattice �1 as a reference system, i.e. everything should be

indexed in the coordinates of this crystal. The unit cell of the

�TJ = 27 CSL can be described by the basis given above by (4).

The basis of the �9 grain-boundary CSL, ��9
C , can be

described by:

C�9 �
ÿ1 ÿ1 0

4 1 1

1 4 2

0@ 1A: �21�

This unit cell can be reshaped to the form given in Table 1 of

Grimmer et al. (1974), but we have chosen the ®rst two basis

vectors in the (511) plane for an easier comparison with C�TJ27

[see (4)]. From the reciprocity property (see x3), it follows

that, in the primitive cubic lattice, the DSC lattice is simply the

reciprocal lattice of the CSL. Then, using A� :� (Aÿ1)T, we

obtain for the unit cells of the corresponding DSC lattices:
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Figure 5
Passage of a grain-boundary dislocation through the triple junction.
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D�9 �
1

9

ÿ2 ÿ7 15

2 ÿ2 3

ÿ1 1 3

0B@
1CA: �22�

D�TJ27 �
1

9

ÿ2 3 5

2 0 1

ÿ1 3 1

0B@
1CA: �23�

Incidentally, one can check that the unit-cell volumes of �TJ
C

and �TJ
D in this case are 27 and 1=27, correspondingly. This

con®rms the general property that for the triple junction

VC = � and VD = 1=�, as is the case for grain boundaries (see

Grimmer et al., 1974). The basis of �TJ
D can be reduced to the

form with the ®rst two vectors the same as in D�9 by replacing

the second vector in (23) by e2 ÿ 2e3, i.e.

D�TJ27 �
1

9

ÿ2 ÿ7 5

2 ÿ2 1

ÿ1 1 1

0@ 1A: �24�

Of course, the D�9 basis [see (22)] could also be chosen such

that all its three vectors have co-prime components, but we

leave it in the above form so that e3 lies in the [511] direction.

Assume that (22) gives the basis of �GB1
D . The two other grain

boundaries in this triple junction have the same DSC lattices

characteristic of the �9 misorientation, but they are rotated

with respect to �GB1
D . To express their bases in the coordinate

system of �1, D�9 must be multiplied by the corresponding

misorientation matrix, i.e. R and RT, where

R � 1

9

8 1 4

4 ÿ4 ÿ7

1 8 ÿ4

0@ 1A: �25�

Thus, the DSC lattice unit cells of the three boundaries are

given by the following matrices:

DGB1 � 1

9

ÿ2 ÿ7 15

2 ÿ2 3

ÿ1 1 3

0B@
1CA; DGB2 � 1

9

ÿ2 ÿ6 15

ÿ1 ÿ3 3

2 ÿ3 3

0B@
1CA;

DGB3 � 1

9

ÿ1 ÿ7 15

ÿ2 1 3

ÿ2 ÿ2 3

0B@
1CA: �26�

Notice that the third basis vector is the same for all three cells

because it lies along the misorientation axis.

Now assume, for example, that a grain-boundary dislocation

with the Burgers vector bGB1 = e1 2 DGB1 goes from grain

boundary GB1 into GB3 and changes its Burgers vector to

bGB3 = e2 2 DGB3. As a result, a residual dislocation is left in

the triple junction with the following Burgers vector:

bTJ � bGB1 ÿ bGB3 � 1
9 ��22�1� ÿ 1

9 ��71�2� � 1
9 �511�: �27�

Thus, bTJ 2 �TJ
D , but it is three times smaller than the DSC

vector in this direction for any of the three grain boundaries

[see (26)]. Hence, this dislocation cannot go into a grain

boundary without generating a grain-boundary stacking fault.

Only after three such dislocations are accumulated in the

triple junction can the resultant dislocation leave the triple-

junction line for a grain boundary as a full grain-boundary

dislocation with a DSC Burgers vector.

The process considered above illustrates how triple junc-

tions may affect grain-boundary sliding, being an obstacle for

the slip transmission from boundary to boundary.

Of course, not every dislocation interaction at � 6� 1

junctions involves trapped triple-junction dislocations. For

example, in the �9±�9±�9 junction, triple-junction DSC

vectors in the (511) plane are the same as the grain-boundary

DSC vectors [compare the ®rst two column vectors in (24) and

(26)]. Hence, no immobile residual triple-junction dislocation

is necessary if the dislocation interaction does not involve

out-of-(511)-plane Burgers vectors. Considering a general

expression for dislocation transfer across the triple junction,

(18c), one can notice that if the grain-boundary dislocation in

GB2 were chosen such that l1i = k1i (i = 1, 2, 3), then the

residual Burgers vector would be a DSC vector of GB3 and

trapping of a residual dislocation in the triple junction could

be avoided. In other words, it is always possible to ®nd such a

variant that the grain-boundary dislocation approaching the

triple junction along one boundary can split into two dislo-

cations that can leave the junction onto adjoining boundaries.

Such a variant would be similar to the transmission of a

dislocation from GB1 into GB2 or from GB3 into GB1 (or

GB2) in an � = 1 junction, see discussion of (19) and (20)

above. However, not every reaction between grain-boundary

dislocations at � 6� 1 triple junctions can be reduced to such a

situation. The example illustrated by (27) can be interpreted in

the following way: meeting of the two dislocations from GB1

and GB3 at the triple junction produces a trapped triple-

junction dislocation.

Summarizing, during dislocation reactions at the � = 1 triple

junction, no immobile residual triple-junction dislocation is

needed.2 Certainly, a dislocation along the triple-junction line

can exist, but (purely geometrically) nothing prevents it from

going into one of the adjoining grain boundaries. In the � 6� 1

triple junction, however, some dislocation reactions may

produce a triple-junction dislocation, which is trapped in the

triple junction and cannot leave it without generating a

stacking-fault-like defect in the grain boundary.3 This is not to

say that every dislocation reaction in an � 6� 1 triple junction

results in an immobile triple-junction dislocation, but rather to

point out that no such reactions are possible in � = 1 junctions.

The dislocation balance must include not only grain

boundaries but also triple junctions. Generally, in the poly-

crystal there should be a net balance of lattice dislocations,

grain-boundary dislocations and triple-junction dislocations.

The key property for dislocation reactions could be formu-

lated as follows: Any vector of any of the three crystal lattices

2 It should be mentioned that the triple-junction dislocations considered in the
present paper are not related to the dislocations that can arise along the triple-
junction line due to different equilibrium rigid-body displacements at the
adjoining grain boundaries (see e.g. Pond & Vitek, 1977). Those dislocations
are intrinsic to the triple-junction structure, while the triple-junction
dislocations considered in the present paper can be termed extrinsic.
3 Owusu-Boahen & King (2000) surmised that dislocation reactions could be
different at � = 1 and � 6� 1 triple junctions, though the underlying reason for
the different behaviour has remained unclear.



and any vector of the three grain-boundary DSC lattices, i.e.

any Burgers vector of lattice or grain-boundary dislocations

can be decomposed into the basis vectors of the corresponding

triple-junction DSC lattice.
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